Vilnius Gediminas Technical UniversityRiga Technical UniversityTallinn University of TechnologyBaltic Road Association

 

Abstracted in databases:
Thomson SCIE: Science Citation Index ExpandedTM (Web of Science), INSPEC, EBSCO, TRIS/TRIS Online, VINITI, CSA's ERD, CSA/ASCE (CSA's TRD), SCOPUS (Elsevier Database)

2015 Impact Factor: 0.519 ©2015 Thomson Reuters, 2015 Journal Citation Report®

ISSN 1822-427X print
ISSN 1822-4288 online
 

 

 
 

"The Baltic Journal of Road and Bridge Engineering"
Vilnius: Technika, 2016, Vol XI, No 1, p. 84-91


Ainars Paeglitis, Andris Freimanis

Comparision of constant-span and influence line methods for long-span bridge load calculations

DOI: 10.3846/bjrbe.2016.10
 
Traffic load models available in building standards are most often developed for short or medium span bridges, however, it is necessary to develop traffic load models just for long span bridges, because the most unfavourable traffic situations are different. Weigh-in-Motion system data from highway A1 and A3 were used in this study. Measurement errors from data were cleaned using two groups of filters. The first group was based on vehicle validity codes recorded by both systems, if any circumstances might have influenced the measurements, the second group cleaned data using general filters for all vehicles and specific filters for trucks and cars. Additionally, vehicles were adjusted for influence of temperature. Data cleaning increased the average gross vehicle, so it could be considered as a conservative choice. Six traffic scenarios, each with different percentage of cars in the traffic, were made to assess the difference in loads from different traffic compositions. Traffic loads for long-span bridges were calculated using two approaches: the first assuming constant span length, the second, using influence lines from a bridge currently in design stage. Gumbel distribution were fitted to the calculate loads and they were extrapolated to probability of exceedance of 5% in 50 year period. Results show that influence line approach yield larger loads than those from constant-span. Both approaches result in loads larger than ones in Eurocode 1 Load Model 1, however, increase might have been caused by an increase in vehicle weight.
 
Keywords: bridge, data cleaning, loads, load modelling, long-span bridges, Weigh-In-Motion (WIM).

Read full article (restricted access)

view contents of entire journal number    |    switch abstract language to Lithuanian, Latvian or Estonian

 

 
 

 

© Vilnius Gediminas Technical University, 2006 - 2018   |   Web Design   

Hey.lt - Interneto reitingai, lankomumo statistika, lankytojų skaitliukai