Vilnius Gediminas Technical UniversityRiga Technical UniversityTallinn University of TechnologyBaltic Road Association


Abstracted in databases:
Thomson SCIE: Science Citation Index ExpandedTM (Web of Science), INSPEC, EBSCO, TRIS/TRIS Online, VINITI, CSA's ERD, CSA/ASCE (CSA's TRD), SCOPUS (Elsevier Database)

2015 Impact Factor: 0.519 ©2015 Thomson Reuters, 2015 Journal Citation Report®

ISSN 1822-427X print
ISSN 1822-4288 online



"The Baltic Journal of Road and Bridge Engineering"
Vilnius: Technika, 2017, Vol XII, No 4, p. 270-275

Zhongyu Li, Tingguo Liu, Jicun Shi, Uladzimir Veranko, Vitali Zankavich

Fatigue resistance of asphalt concrete pavements. Peculiarity and assessments of potentials

DOI: 10.3846/bjrbe.2017.34
This article presents the results of research of processes of deformation and destruction of asphalt concrete pavements under cyclic loads. As the ground for such approach to estimation of the asphalt concrete properties served the proof that regardless of the composition and structure of asphalt concrete with an equal amount of elastic (viscoplastic) bonds possess the same relaxation ability. This situation is a significant feature of the behaviour of asphalt concrete, which opens the way for the development of certain approaches to the analysis of their properties, evaluation of reliability and durability. The promising methodology for the comparative assessment of fatigue and cyclic durability of asphalt concrete by exploring the complex set of elastic and viscoplastic bonds in their structure depending on the temperature, magnitude, and modes of action of the loads is proposed in the presented work. In the future, the establishment of patterns of behaviour of asphalt concretes with the same set of elastic bonds is allows to optimize compositions based on the principles of temperature-structural analogythat is relevant in studying fatigue and cyclic durability as well as low-temperature crack resistance and shear stability.
Keywords: asphalt concrete, cyclic life, elastic bonds, energy of rupture, fatigue, strain, stress, toughness, viscoelasticity.

Read full article (restricted access)

view contents of entire journal number    |    switch abstract language to Lithuanian, Latvian or Estonian




© Vilnius Gediminas Technical University, 2006 - 2018   |   Web Design - Interneto reitingai, lankomumo statistika, lankytojų skaitliukai