ļ»æ Aurimas Jurčius, Algirdas Vaclovas Valiulis, Olegas Černašėjus - Influence of Vibratory Stress Relief on Residual Stresses in Bridge Structural Members Weldments (Vol VI, No 4)

Vilnius Gediminas Technical UniversityRiga Technical UniversityTallinn University of TechnologyBaltic Road Association

 

Abstracted in databases:
Thomson SCIE: Science Citation Index ExpandedTM (Web of Science), INSPEC, EBSCO, TRIS/TRIS Online, VINITI, CSA's ERD, CSA/ASCE (CSA's TRD), SCOPUS (Elsevier Database)

2015 Impact Factor: 0.519 ©2015 Thomson Reuters, 2015 Journal Citation Report®

ISSN 1822-427X print
ISSN 1822-4288 online
 

 

 
 

"The Baltic Journal of Road and Bridge Engineering"
Vilnius: Technika, 2011, Vol VI, No 4, p. 243-248


Aurimas Jurčius, Algirdas Vaclovas Valiulis, Olegas Černašėjus

Influence of Vibratory Stress Relief on Residual Stresses in Bridge Structural Members Weldments

DOI: 10.3846/bjrbe.2011.31
 
The welding process can join two similar materials with a bond that has mechanical properties comparable to the original material. Unfortunately, this process induces residual stresses in the weldment, which, if left untreated, can cause distortion of the part, premature fatigue failure or cracking along the weld. In a cases of cracking in steel bridge structural members were attributed to metal fatigue. The majority of these fatigue cracks are initiated adjacent to a weld. A post-weld heat treatment is the traditional method of relieving these stresses, but is costly and a time consuming process. Heat treatment is required for weldments, which have heavy fatigue loading since the post-weld heat treatment reduces the residual stresses in the weldment and generates more uniform mechanical properties. Vibratory stress relief techniques could be used to substitute the heat treatment for these types of weldments and save time and money. The purpose of this paper is to provide a brief overview of the generation, measurement, and reduction of residual stresses. Residual stresses in the weld bead were measured by means of X-ray diffraction, neutron diffraction, ultrasonic technique, hole drilling and numerical methods. In addition, welded specimens were subjected to mechanical testing with purpose of determination of VSR effect on weld and heat-affected zone metal.
 
Keywords:  vibration stress relief, residual stresses, ultrasonic stress measurement, high resolution X-ray diffraction, neutron diffraction, hole-drilling method.

Read full article (restricted access)

view contents of entire journal number    |    switch abstract language to Lithuanian, Latvian or Estonian

 

 
 

 

© Vilnius Gediminas Technical University, 2006 - 2018   |   Web Design   

Hey.lt - Interneto reitingai, lankomumo statistika, lankytojų skaitliukai