ļ»æ Algirdas Juozapaitis, Romualdas Kliukas, Giedrė Sandovič, Ona Lukoševičienė, Tomas Merkevičius - Analysis of modern three-span suspension bridges with stiff in bending cables (Vol VIII, No 3)

Vilnius Gediminas Technical UniversityRiga Technical UniversityTallinn University of TechnologyBaltic Road Association

 

Abstracted in databases:
Thomson SCIE: Science Citation Index ExpandedTM (Web of Science), INSPEC, EBSCO, TRIS/TRIS Online, VINITI, CSA's ERD, CSA/ASCE (CSA's TRD), SCOPUS (Elsevier Database)

2015 Impact Factor: 0.519 ©2015 Thomson Reuters, 2015 Journal Citation Report®

ISSN 1822-427X print
ISSN 1822-4288 online
 

 

 
 

"The Baltic Journal of Road and Bridge Engineering"
Vilnius: Technika, 2013, Vol VIII, No 3, p. 205-211


Algirdas Juozapaitis, Romualdas Kliukas, Giedrė Sandovič, Ona Lukoševičienė, Tomas Merkevičius

Analysis of modern three-span suspension bridges with stiff in bending cables

DOI: 10.3846/bjrbe.2013.26
 
Suspension bridges are one of the most effective bridge structures used for large spans to overlap. Recently, not only the single-span bridges but also multi-span suspension bridges have been used. The main issue of design and analysis shall consider the excessive deformability induced by the interaction of flexible and kinematic displacement. Stabilization of suspension bridges could be ensured by various means. The most effective and up-to-date measure applied to reduce displacements of suspension bridges is the application of the so-called “rigid” cables with appropriate bending stiffness instead of conventional flexible cables. These retaining elements demonstrate high corrosion stability; their cross-sections are designed using conventional structural steel sections, factory and fabricated connections are simple and firm. The main advanced feature of these cables is that these elements along with the suspended stiffening girder stabilize the initial shape of the bridge effectively. It shall be noted that analysis methods applied for these innovative three-span suspension bridges with “rigid” cables are still under development. There are only few individual publications describing the behaviour of a single-span suspension bridge. The article describes the modern suspension three-span bridge and provides analytic expressions of internal forces and displacements calculated considering the erection sequence.
 
Keywords: suspension bridge, steel bridge, rigid cable, symmetric loadings, non-linear analysis.

Read full article (restricted access)

view contents of entire journal number    |    switch abstract language to Lithuanian, Latvian or Estonian

 

 
 

 

© Vilnius Gediminas Technical University, 2006 - 2018   |   Web Design   

Hey.lt - Interneto reitingai, lankomumo statistika, lankytojų skaitliukai