ļ»æ Eugene J. OBrien, Arturo González, Jason Dowling, Aleš Žnidarič - Direct measurement of dynamics in road bridges using a bridge weigh-in-motion system (Vol VIII, No 4)

Vilnius Gediminas Technical UniversityRiga Technical UniversityTallinn University of TechnologyBaltic Road Association

 

Abstracted in databases:
Thomson SCIE: Science Citation Index ExpandedTM (Web of Science), INSPEC, EBSCO, TRIS/TRIS Online, VINITI, CSA's ERD, CSA/ASCE (CSA's TRD), SCOPUS (Elsevier Database)

2015 Impact Factor: 0.519 ©2015 Thomson Reuters, 2015 Journal Citation Report®

ISSN 1822-427X print
ISSN 1822-4288 online
 

 

 
 

"The Baltic Journal of Road and Bridge Engineering"
Vilnius: Technika, 2013, Vol VIII, No 4, p. 263-270


Eugene J. OBrien, Arturo González, Jason Dowling, Aleš Žnidarič

Direct measurement of dynamics in road bridges using a bridge weigh-in-motion system

DOI: 10.3846/bjrbe.2013.34
 
A method is presented of measuring a bridge’s characteristic allowance for dynamic interaction in the form of Assessment Dynamic Ratio. Using a Bridge Weigh-in-Motion system, measurements were taken at a bridge in Slovenia over 58 days. From the total observed traffic population, 5-axle trucks were extracted and studied. The Bridge Weigh-in-Motion system inferred the static weights of the trucks, giving each measured event’s dynamic increment of load. Theoretical simulations were carried out using a 3-dimensional vehicle model coupled with a bridge plate model, simulating a traffic population similar to the population measured at the site. These theoretical simulations varied those properties of the 5-axle fleet that influence the dynamic response; simulating multiple sets of total (dynamic + static) responses for a single measured static strain response. Extrapolating the results of these theoretical simulations to a 50-year Assessment Dynamic Ratio gives similar results to those obtained by extrapolating the data measured using the Bridge Weigh-in-Motion system. A study of the effect of Bridge Weigh-in-Motion system errors on the predictions of Assessment Dynamic Ratio is conducted, identifying a trend in the Bridge Weigh-in-Motion calculations of maximum static response. The result of this bias is in turn quantified in the context of predicting characteristic maximum total load effect.
 
Keywords: bridge, dynamics, Assessment Dynamic Ratio, soft load testing, Vehicle Bridge Interaction, Weigh-in-Motion (WIM).

Read full article (restricted access)

view contents of entire journal number    |    switch abstract language to Lithuanian, Latvian or Estonian

 

 
 

 

© Vilnius Gediminas Technical University, 2006 - 2018   |   Web Design   

Hey.lt - Interneto reitingai, lankomumo statistika, lankytojų skaitliukai